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Solution The solution set S of the system of four constraint inequalities is shown in

Figure 13.11. It is the quadrilateral region with vertices .0; 0/, .3; 0/, .2; 2/, and .0; 3/.

Several level curves of the linear function F are also shown in the figure. They are

parallel straight lines with slope �2
7

. We want the line that gives F the greatest value

and that still intersects S. Evidently this is the line F D 21 that passes through the

vertex .0; 3/ of S. The maximum value of F subject to the constraints is 21.

Figure 13.11 The shaded region is the

solution set for the constraint inequalities

in Example 4
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As this simple example illustrates, a linear function with domain restricted by linear

inequalities does not achieve maximum or minimum values at points in the interior

of its domain (if that domain has an interior). Any such extreme value occurs at a

boundary point of the domain or a set of such boundary points. Where an extreme value

occurs at a set of boundary points, that set will always contain at least one vertex. This

phenomenon holds in general for extreme-value problems for linear functions in any

number of variables with domains restricted by any number of linear inequalities. For

problems involving three variables the domain will be a convex region of R
3 bounded

by planes. For a problem involving n variables the domain will be a convex region

in R
n bounded by .n � 1/-dimensional hyperplanes. Such polyhedral regions still

have vertices (where n hyperplanes intersect), and maximum or minimum values of

linear functions subject to the constraints will still occur at subsets of the boundary

containing such vertices. These problems can therefore be solved by evaluating the

linear function to be extremized (it is called the objective function) at all the vertices

and selecting the greatest or least value.

In practice, linear programming problems can involve hundreds or even thousands

of variables and even more constraints. Such problems need to be solved with com-

puters, but even then it is extremely inefficient, if not impossible, to calculate all the

vertices of the constraint solution set and the values of the objective function at them.

Much of the study of linear programming therefore centres on devising techniques for

getting to (or at least near) the optimizing vertex in as few steps as possible. Usually,

this involves criteria whereby large numbers of vertices can be rejected on geometric

grounds. We will not delve into such techniques here but will content ourselves with

one more example to illustrate, in a very simple case, how the underlying geometry of

a problem can be used to reduce the number of vertices that must be considered.

E X A M P L E 5
A tailor has 230 m of a certain fabric and has orders for up to 20

suits, up to 30 jackets, and up to 40 pairs of slacks to be made from

the fabric. Each suit requires 6 m, each jacket 3 m, and each pair of slacks 2 m of the

fabric. If the tailor’s profit is $20 per suit, $14 per jacket, and $12 per pair of slacks,

how many of each should he make to realize the maximum profit from his supply of

the fabric?
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Solution Suppose he makes x suits, y jackets, and z pairs of slacks. Then his profit

will be

P D 20x C 14y C 12z:

The constraints posed in the problem are

x � 0;

y � 0;

z � 0;

x � 20;

y � 30;

z � 40;

6x C 3y C 2z � 230:

The last inequality is due to the limited supply of fabric. The solution set is shown in

Figure 13.12. It has 10 vertices, A;B; : : : ; J: Since P increases in the direction of the

vector rP D 20iC 14jC 12k, which points into the first octant, its maximum value

cannot occur at any of the vertices A;B; : : : ; G. (Think about why.) Thus, we need

look only at the vertices H , I; and J .

H D .20; 10; 40/; P D 1;020 at H:

I D .10; 30; 40/; P D 1;100 at I:

J D .20; 30; 10/; P D 940 at J:

Thus, the tailor should make 10 suits, 30 jackets, and 40 pairs of slacks to realize the

maximum profit, $1,100, from the fabric.
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Figure 13.12 The convex set of points

satisfying the constraints in Example 5

E X E R C I S E S 13.2

1. Find the maximum and minimum values of

f .x; y/ D x � x2
C y2 on the rectangle 0 � x � 2,

0 � y � 1.

2. Find the maximum and minimum values of

f .x; y/ D xy � 2x on the rectangle �1 � x � 1, 0 � y � 1.

3. Find the maximum and minimum values of

f .x; y/ D xy � y2 on the disk x2
C y2

� 1.

4. Find the maximum and minimum values of f .x; y/ D x C 2y

on the disk x2
C y2

� 1.

5. Find the maximum and minimum values of

f .x; y/ D xy � x3y2 over the square 0 � x � 1, 0 � y � 1.

6. Find the maximum and minimum values of

f .x; y/ D xy.1 � x � y/ over the triangle with vertices

.0; 0/, .1; 0/, and .0; 1/.

7. Find the maximum and minimum values of

f .x; y/ D sinx cosy on the closed triangular region bounded

by the coordinate axes and the line x C y D 2� .

8. Find the maximum value of f .x; y/ D sinx siny sin.x C y/

over the triangle bounded by the coordinate axes and the line

x C y D � .

9. The temperature at all points in the disk x2
C y2

� 1 is given

by T D .x C y/ e�x2�y2

. Find the maximum and minimum

temperatures at points of the disk.

10. Find the maximum and minimum values of

f .x; y/ D
x � y

1C x2
C y2

on the upper half-plane y � 0.

11. Find the maximum and minimum values of xy2
C yz2 over

the ball x2
C y2

C z2
� 1.

12. Find the maximum and minimum values of xz C yz over the

ball x2
C y2

C z2
� 1.

13. Consider the function f .x; y/ D xy e�xy with domain the

first quadrant: x � 0; y � 0. Show that

limx!1 f .x; kx/ D 0. Does f have a limit as .x; y/ recedes

arbitrarily far from the origin in the first quadrant? Does f

have a maximum value in the first quadrant?

14. Repeat Exercise 13 for the function f .x; y/ D xy2 e�xy .

15. In a certain community there are two breweries in competition,

so that sales of each negatively affect the profits of the other. If

brewery A produces x litres of beer per month and brewery B

produces y litres per month, then brewery A’s monthly profit

$P and brewery B’s monthly profit $Q are assumed to be

P D 2x �
2x

2
C y

2

106
;

Q D 2y �
4y2
C x2

2 � 106
:

Find the sum of the profits of the two breweries if each

brewery independently sets its own production level to

maximize its own profit and assumes its competitor does

likewise. Find the sum of the profits if the two breweries

cooperate to determine their respective productions to

maximize that sum.
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16.I Equal angle bends are made at equal distances from the two

ends of a 100 m long straight length of fence so the resulting

three-segment fence can be placed along an existing wall to

make an enclosure of trapezoidal shape. What is the largest

possible area for such an enclosure?

17. MaximizeQ.x; y/ D 2x C 3y subject to the constraints

x � 0, y � 0, y � 5, x C 2y � 12, and 4x C y � 12.

18. Minimize F.x; y; z/ D 2x C 3y C 4z subject to the

constraints x � 0, y � 0, z � 0, x C y � 2, y C z � 2, and

x C z � 2.

19. A textile manufacturer produces two grades of fabric

containing wool, cotton, and polyester. The deluxe grade has

composition (by weight) 20% wool, 50% cotton, and 30%

polyester, and it sells for $3 per kilogram. The standard grade

has composition 10% wool, 40% cotton, and 50% polyester,

and it sells for $2 per kilogram. If he has in stock 2,000 kg of

wool and 6,000 kg each of cotton and polyester, how many

kilograms of fabric of each grade should he manufacture to

maximize his revenue?

20. A 10-hectare parcel of land is zoned for building densities of 6

detached houses per hectare, 8 duplex units per hectare, or 12

apartments per hectare. The developer who owns the land can

make a profit of $40,000 per house, $20,000 per duplex unit,

and $16,000 per apartment that he builds. Municipal bylaws

require him to build at least as many apartments as the total of

houses and duplex units. How many of each type of dwelling

should he build to maximize his profit?

13.3 Lagrange Multipliers

A constrained extreme-value problem is one in which the variables of the function to

be maximized or minimized are not completely independent of one another, but must

satisfy one or more constraint equations or inequalities. For instance, the problems

maximize f .x; y/ subject to g.x; y/ D C

and

minimize f .x; y; z; w/ subject to g.x; y; z; w/ D C1;

and h.x; y; z; w/ D C2

have, respectively, one and two constraint equations, while the problem

maximize f .x; y; z/ subject to g.x; y; z/ � C

has a single constraint inequality.

Generally, inequality constraints can be regarded as restricting the domain of the

function to be extremized to a smaller set that still has interior points. Section 13.2 was

devoted to such problems. In each of the first three examples of that section we looked

for free (i.e., unconstrained) extreme values in the interior of the domain, and we also

examined the boundary of the domain, which was specified by one or more constraint

equations. In Example 1 we parametrized the boundary and expressed the function

to be extremized as a function of the parameter, thus reducing the boundary case to

a free problem in one variable instead of a constrained problem in two variables. In

Example 2 the boundary consisted of three line segments, on two of which the function

was obviously zero. We solved the equation for the third boundary segment for y

in terms of x, again in order to express the values of f .x; y/ on that segment as a

function of one free variable. A similar approach was used in Example 3 to deal with

the triangular boundary of the domain of the area function A.�; �/.

The reduction of extremization problems with equation constraints to free prob-

lems with fewer independent variables is only feasible when the constraint equations

can be solved either explicitly for some variables in terms of others or parametrically

for all variables in terms of some parameters. It is often very difficult or impossible to

solve the constraint equations, so we need another technique.

The Method of Lagrange Multipliers
A technique for finding extreme values of f .x; y/ subject to the equality constraint

g.x; y/ D 0 is based on the following theorem:
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T H E O R E M

4

Suppose that f and g have continuous first partial derivatives near the point

P0 D .x0; y0/ on the curve C with equation g.x; y/ D 0. Suppose also that, when

restricted to points on C, the function f .x; y/ has a local maximum or minimum value

at P0. Finally, suppose that

(i) P0 is not an endpoint of C, and

(ii) rg.P0/ ¤ 0.
Then there exists a number �0 such that .x0; y0; �0/ is a critical point of the

Lagrange function

L.x; y; �/ D f .x; y/C �g.x; y/:

PROOF Together, (i) and (ii) imply that C is smooth enough to have a tangent line at

P0 and thatrg.P0/ is normal to that tangent line. Ifrf .P0/ is not parallel torg.P0/,

then rf .P0/ has a nonzero vector projection v along the tangent line to C at P0. (See

Figure 13.13.) Therefore, f has a positive directional derivative at P0 in the direction

of v and a negative directional derivative in the opposite direction. Thus, f .x; y/

increases or decreases as we move away from P0 along C in the direction of v or �v,

and f cannot have a maximum or minimum value at P0. Since we are assuming that f

does have an extreme value at P0, it must be that rf .P0/ is parallel to rg.P0/. Since

rg.P0/ ¤ 0, there must exist a real number �0 such that rf .P0/ D ��0rg.P0/, or

r.f C �0g/.P0/ D 0:

The two components of the above vector equation assert that @L=@x D 0 and @L=@y D

0 at .x0; y0; �0/. The third equation that must be satisfied by a critical point of L is

@L=@� D g.x; y/ D 0. This is satisfied at .x0; y0; �0/ because P0 lies on C. Thus,

.x0; y0; �0/ is a critical point of L.x; y; �/.

rf .P0/

rg.P0/

CP0

v

g.x; y/ D 0

Figure 13.13 If rf .P0/ is not a multiple

of rg.P0/, then rf .P0/ has a nonzero

projection v tangent to the level curve of g

through P0

Theorem 4 suggests that to find candidates for points on the curve g.x; y/ D 0 at which

f .x; y/ is maximum or minimum, we should look for critical points of the Lagrange

function

L.x; y; �/ D f .x; y/C �g.x; y/:

At any critical point of L we must have

0 D
@L

@x
D f1.x; y/C �g1.x; y/;

0 D
@L

@y
D f2.x; y/C �g2.x; y/;

9

>

>

=

>

>

;

that is, rf is parallel to rg,

and 0 D
@L

@�
D g.x; y/; the constraint equation:

Note that it is assumed that the constrained problem does, in fact, have a solution.

Theorem 4 does not guarantee that a solution exists; it only provides a means for find-

ing a solution already known to exist. It is usually necessary to satisfy yourself that

the problem you are trying to solve has a solution before using this method to find the

solution.

Let us put the method to a concrete test:

E X A M P L E 1
Find the shortest distance from the origin to the curve x2y D 16.
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and let

K1 = A, K2 =
∣

∣

∣

∣

A D
D B

∣

∣

∣

∣

= AB − D2

K3 =

∣

∣

∣

∣

∣

A D E
D B F
E F C

∣

∣

∣

∣

∣

= ABC + 2DE F − B E2 − C D2 − AF2.

Suppose thatK1 6= 0, K2 6= 0, andK3 6= 0. We have

Q(u, v, w)

= A

[

u2 + 2u
Dv + Ew

A
+
(

Dv + Ew

A

)2
]

+
AB − D2

A
v2 +

AC − E2

A
w2 +

2(AF − DE)

A
vw

= A

(

u +
Dv + Ew

A

)2

+
AB − D2

A

(

v2 +
2(AF − DE)

AB − D2 vw +
(

AF − DE

AB − D2

)2

w2

)

+
[

AC − E2

A
−

(AF − DE)2

A(AB − D2)

]

w2

= A

(

u +
Dv + Ew

A

)2

+
AB − D2

A

(

v +
AF − DE

AB − D2
w

)2

+
A(ABC − B E2 − AF2 − C D2 + 2DE F)

A(AB − D2)
w2

= K1

(

u +
Dv + Ew

A

)2

+
K2

K1

(

v +
AF − DE

AB − D2
w

)2

+
K3

K2
w2.

If K1 > 0, K2 > 0, andK3 > 0, then all three squares
the last expression above have positive coefficients, and
so Q is positive definite. IfK1 < 0, K2 > 0, and
K3 < 0, then all three squares the last expression above
have negative coefficients, and soQ is negative definite.
In all other cases where none of theKi = 0, the co-
efficients of the squares are not all of the same sign so
choices of(u, v, w) can be made which make the expres-
sion either positive or negative, andQ is indefinite.

If f has continuous partial derivatives of order two
and (a, b, c) is a critical point of f (x, y, z), let

A = f11(a, b, c),

B = f22(a, b, c),

C = f33(a, b, c),

D = f12(a, b, c),

E = f23(a, b, c),

F = f23(a, b, c).

Then f has a local minimum value at(a, b, c) if K1 > 0,
K2 > 0, andK3 > 0, a local maximum value at(a, b, c)
if K1 < 0, K2 > 0, andK3 < 0, and a saddle point at
(a, b, c) if K1, K2, K3 are all nonzero but satisfy neither
of the above conditions.

Section 13.2 Extreme Values of Functions
Defined on Restricted Domains (page 758)

1. f (x, y) = x − x2 + y2 on
R = {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 1}.
For critical points:

0 = f1(x, y) = 1 − 2x, 0 = f2(x, y) = 2y.

The only CP is(1/2, 0), which lies on the boundary of
R.
The boundary consists of four segments; we investigate
each.
On x = 0 we have f (x, y) = f (0, y) = y2 for
0 ≤ y ≤ 1, which has minimum value 0 and maximum
value 1.
On y = 0 we have f (x, y) = f (x, 0) = x − x2 = g(x)

for 0 ≤ x ≤ 2. Sinceg′(x) = 1 − 2x = 0 at x = 1/2,
g(1/2) = 1/4, g(0) = 0, andg(2) = −2, the maxi-
mum and minimum values off on the boundary segment
y = 0 are 1/4 and−2 respectively.
On x = 2 we have f (x, y) = f (2, y) = −2 + y2 for
0 ≤ y ≤ 1, which has minimum value−2 and maximum
value−1.
On y = 1, f (x, y) = f (x, 1) = x − x2 + 1 = g(x) + 1
for 0 ≤ x ≤ 2. Thus the maximum and minimum values
of f on the boundary segmenty = 1 are 5/4 and−1
respectively.
Overall, f has maximum value 5/4 and minimum value
−2 on the rectangleR.

2. f (x, y) = xy − 2x on
R = {(x, y) : −1 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
For critical points:

0 = f1(x, y) = y − 2, 0 = f2(x, y) = x .

The only CP is(0, 2), which lies outsideR. Therefore
the maximum and minimum values off on R lie on one
of the four boundary segments ofR.
On x = −1 we have f (−1, y) = 2 − y for 0 ≤ y ≤ 1,
which has maximum value 2 and minimum value 1.
On x = 1 we have f (1, y) = y − 2 for 0 ≤ y ≤ 1, which
has maximum value−1 and minimum value−2.
On y = 0 we have f (x, 0) = −2x for −1 ≤ x ≤ 1,
which has maximum value 2 and minimum value−2.
On y = 1 we have f (x, 1) = −x for −1 ≤ x ≤ 1, which
has maximum value 1 and minimum value−1.
Thus the maximum and minimum values off on the
rectangleR are 2 and−2 respectively.

3. f (x, y) = xy − y2 on D = {(x, y) : x2 + y2 ≤ 1}.
For critical points:

0 = f1(x, y) = y, 0 = f2(x, y) = x − 2y.
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The only CP is(0, 0), which lies insideD. We have
f (0, 0) = 0.
The boundary ofD is the circlex = cost , y = sint ,
−π ≤ t ≤ π . On this circle we have

g(t) = f (cost, sint) = cost sint − sin2 t

=
1

2

[

sin 2t + cos 2t − 1
]

, (−π ≤ t ≤ π).

g(0) = g(2π) = 0

g′(t) = cos 2t − sin 2t.

The critical points ofg satisfy cos 2t = sin 2t , that is,

tan 2t = 1, so 2t = ±
π

4
or ±

5π

4
, and t = ±

π

8
or ±

5π

8
.

We have

g
(π

8

)

=
1

2
√

2
−

1

2
+

1

2
√

2
=

1
√

2
−

1

2
> 0

g
(

−
π

8

)

= −
1

2
√

2
−

1

2
+

1

2
√

2
= −

1

2

g

(

5π

8

)

= −
1

2
√

2
−

1

2
−

1

2
√

2
= −

1
√

2
−

1

2

g

(

−
5π

8

)

=
1

2
√

2
−

1

2
−

1

2
√

2
= −

1

2
.

Thus the maximum and minimum values off on the

disk D are
1

√
2

−
1

2
and−

1
√

2
−

1

2
respectively.

4. f (x, y) = x + 2y on the closed diskx2 + y2 ≤ 1. Since
f1 = 1 and f2 = 2, f has no critical points, and the
maximum and minimum values off , which must exist
becausef is continuous on a closed, bounded set in the
plane, must occur at boundary points of the domain, that
is, points of the circlex2 + y2 = 1. This circle can be
parametrizedx = cost , y = sint , so that

f (x, y) = f (cost, sint) = cost + 2 sint = g(t), say.

For critical points ofg: 0 = g′(t) = − sint + 2 cost .
Thus tant = 2, andx = ±1/

√
5, y = ±2/

√
5. The

critical points are(−1/
√

5,−2/
√

5), where f has value
−

√
5, and(1/

√
5, 2/

√
5), where f has value

√
5. Thus

the maximum and minimum values off (x, y) on the
disk are

√
5 and−

√
5 respectively.

5. f (x, y) = xy − x3y2 on the squareS: 0 ≤ x ≤ 1,
0 ≤ y ≤ 1.
f1 = y − 3x2y2 = y(1− 3x2y),

f2 = x − 2x3y = x(1 − 2x2y).
(0, 0) is a critical point. Any other critical points must
satisfy 3x2y = 1 and 2x2y = 1, that is,x2y = 0.
Therefore(0, 0) is the only critical point, and it is on the
boundary ofS. We need therefore only consider the val-
ues of f on the boundary ofS.
On the sidesx = 0 and y = 0 of S, f (x, y) = 0.

On the sidex = 1 we have f (1, y) = y − y2 = g(y),
(0 ≤ y ≤ 1). g has maximum value 1/4 at its critical
point y = 1/2.
On the sidey = 1 we have f (x, 1) = x − x3 = h(x),
(0 ≤ x ≤ 1). h has critical point given by 1− 3x2 = 0;
only x = 1/

√
3 is on the side ofS.

h

(

1
√

3

)

=
2

3
√

3
>

1

4
.

On the squareS, f (x, y) has minimum value 0 (on the
sidesx = 0 and y = 0 and at the corner(1, 1) of
the square), and maximum value 2/(3

√
3) at the point

(1/
√

3, 1). There is a smaller local maximum value at
(1, 1/2).

6. f (x, y) = xy(1 − x − y) on the triangleT shown in
the figure. Evidentlyf (x, y) = 0 on all three bound-
ary segements ofT , and f (x, y) > 0 insideT . Thus
the minimum value off on T is 0, and the maximum
value must occur at an interior critical point. For critical
points:

0 = f1(x, y) = y(1−2x−y), 0 = f2(x, y) = x(1−x−2y).

The only critical points are(0, 0), (1, 0) and (0, 1),
which are on the boundary ofT , and(1/3, 1/3),
which is insideT . The maximum value off over T
is f (1/3, 1/3) = 1/27.

y

x

1

x+y=1

T

1

Fig. 13.2.6

7. Since−1 ≤ f (x, y) = sinx cosy ≤ 1 everywhere, and
since f (π/2, 0) = 1, f (3π/2, 0) = −1, and both(π/2, 0)

and (3π/2, 0) belong to the triangle bounded byx = 0,
y = 0 andx + y = 2π , therefore the maximum and
minimum values off over that triangle must be 1 and
−1 respectively.

8. f (x, y) = sinx siny sin(x + y) on the triangleT shown
in the figure. Evidentlyf (x, y) = 0 on the boundary
of T , and f (x, y) > 0 at all points insideT . Thus the
minimum value of f on T is zero, and the maximum
value must occur at an interior critical point. For critical
points insideT we must have

0 = f1(x, y) = cosx siny sin(x + y) + sinx siny cos(x + y)

0 = f2(x, y) = sinx cosy sin(x + y) + sinx siny cos(x + y).

501

www.konkur.in



SECTION 13.2 (PAGE 758) ADAMS and ESSEX: CALCULUS 8

Therefore cosx siny = cosy sinx , which impliesx = y
for points insideT , and

cosx sinx sin 2x + sin2 x cos 2x = 0

2 sin2 x cos2 x + 2 sin2 x cos2 x − sin2 x = 0

4 cos2 x = 1.

Thus cosx = ±1/2, andx = ±π/3. The interior critical
point is (π/3, π/3), where f has the value 3

√
3/8. This

is the maximum value off on T .
y

x

T

π

z+y=π

π

Fig. 13.2.8

9. T = (x + y)e−x2−y2
on D = {(x, y) : x2 + y2 ≤ 1}.

For critical points:

0 =
∂T

∂x
=
(

1 − 2x(x + y)
)

e−x2−y2

0 =
∂T

∂y
=
(

1 − 2y(x + y)
)

e−x2−y2
.

The critical points are given by
2x(x + y) = 1 = 2y(x + y), which forcesx = y and

4x2 = 1, so x = y = ±
1

2
.

The two critical points are

(

1

2
,

1

2

)

and

(

−
1

2
,−

1

2

)

,

both of which lie insideD. T takes the values±e−1/2 at
these points.

On the boundary ofD, x = cost , y = sint , 0 ≤ t ≤ 2π ,
so that

T = (cost + sint)e−1 = g(t), (0 ≤ t ≤ 2π).

We haveg(0) = g(2π) = e−1. For critical points ofg:

0 = g′(t) = (cost − sint)e−1,

so tant = 1 andt = π/4 or t = 5π/4. Observe that
g(π/4) =

√
2e−1, and g(5π/4) = −

√
2e−1.

Sincee−1/2 >
√

2e−1 (becausee > 2), the maximum and
minimum values ofT on the disk are±e−1/2, the values
at the interior critical points.

10. f (x, y) =
x − y

1 + x2 + y2 on the half-planey ≥ 0.

For critical points:

0 = f1(x, y) =
1 − x2 + y2 + 2xy

(1 + x2 + y2)2

0 = f2(x, y) =
−1 − x2 + y2 − 2xy

(1 + x2 + y2)2 .

Any critical points must satisfy 1− x2 + y2 + 2xy = 0
and−1 − x2 + y2 − 2xy = 0, and hencex2 = y2 and
2xy = −1. Thereforey = −x = ±1/

√
2. The only

critical point in the regiony ≥ 0 is (−1/
√

2, 1/
√

2),
where f has the value−1/

√
2.

On the boundaryy = 0 we have

f (x, 0) =
x

1 + x2 = g(x), (−∞ < x < ∞).

Evidently, g(x) → 0 asx → ±∞.

Sinceg′(x) =
1 − x2

(1 + x2)2 , the critical points ofg are

x = ±1. We haveg(±1) = ±
1

2
.

The maximum and minimum values off on the upper
half-planey ≥ 0 are 1/2 and−1/

√
2 respectively.

11. Let f (x, y, z) = xy2+yz2 on the ballB: x2+y2+z2 ≤ 1.
First look for interior critical points:

0 = f1 = y2, 0 = f2 = 2xy + z2, 0 = f3 = 2yz.

All points on thex-axis are CPs, andf = 0 at all such
points.

Now consider the boundary spherez2 = 1 − x2 − y2. On
it

f (x, y, z) = xy2+y(1−x2−y2) = xy2+y−x2y−y3 = g(x, y),

whereg is defined forx2+ y2 ≤ 1. Look for interior CPs
of g:

0 = g1 = y2 − 2xy = y(y − 2x)

0 = g2 = 2xy + 1 − x2 − 3y2.

Case I:y = 0. Theng = 0 and f = 0.
Case II: y = 2x . Then 4x2 + 1 − x2 − 12x2 = 0, so
9x2 = 1 andx = ±1/3. This case produces critical
points

(

1

3
,

2

3
,±

2

3

)

, where f =
4

9
, and

(

−
1

3
,−

2

3
,±

2

3

)

, where f = −
4

9
.

Now we must consider the boundaryx2 + y2 = 1 of the
domain ofg. Here

g(x, y) = xy2 = x(1 − x2) = x − x3 = h(x)
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for −1 ≤ x ≤ 1. At the endpointsx = ±1, h = 0, so
g = 0 and f = 0. For CPs ofh:

0 = h ′(x) = 1 − 3x2,

so x = ±1/
√

3 and y = ±
√

2/3. The value ofh at such
points is±2/(3

√
3). However 2/(3

√
3) < 4/9, so the

maximum value off is 4/9, and the minimum value is
−4/9.

12. Let f (x, y, z) = xz + yz on the ballx2 + y2 + z2 ≤ 1.
First look for interior critical points:

0 = f1 = z, 0 = f2 = z, 0 = f3 = x + y.

All points on the linez = 0, x + y = 0 are CPs, and
f = 0 at all such points.

Now consider the boundary spherex2 + y2 + z2 = 1. On
it

f (x, y, z) = (x + y)z = ±(x + y)

√

1 − x2 − y2 = g(x, y),

whereg has domainx2 + y2 ≤ 1. On the boundary of its
domain,g is identically 0, althoughg takes both positive
and negative values at some points inside its domain.
Therefore, we need consider only critical points ofg in
x2 + y2 < 1. For such CPs:

0 = g1 =
√

1 − x2 − y2 +
(x + y)(−2x)

2
√

1 − x2 − y2

=
1 − x2 − y2 − x2 − xy

√

1 − x2 − y2

0 = g2 =
1 − x2 − y2 − xy − y2

√

1 − x2 − y2
.

Therefore 2x2 + y2+ xy = 1 = x2 +2y2+ xy, from which
x2 = y2.
Case I:x = −y. Then g = 0, so f = 0.
Case II:x = y. Then 2x2+ x2+ x2 = 1, so x2 = 1/4 and
x = ±1/2. g (which is really two functions depending
on our choice of the “+” or “ −” sign) has four CPs, two
corresponding tox = y = 1/2 and two tox = y = −1/2.
The values ofg at these four points are±1/

√
2.

Since we have considered all points wheref can have
extreme values, we conclude that the maximum value
of f on the ball is 1/

√
2 (which occurs at the boundary

points±(1
2, 1

2, 1√
2
)) and minimum value−1/

√
2 (which

occurs at the boundary points±(1
2, 1

2,− 1√
2
)).

13. f (x, y) = xye−xy on Q = {(x, y) : x ≥ 0, y ≥ 0}.
Since f (x, kx) = kx2e−kx2 → 0 asx → ∞ if k > 0, and
f (x, 0) = f (0, y) = 0, we have f (x, y) → 0 as(x, y)

recedes to infinity along any straight line from the origin
lying in the first quadrantQ.

However, f

(

x,
1

x

)

= 1 and f (x, 0) = 0 for all x > 0,

even though the points

(

x,
1

x

)

and (x, 0) become ar-

bitrarily close together asx increases. Thusf does not
have a limit asx2 + y2 → ∞.
Observe thatf (x, y) = re−r = g(r) on the hyperbola
xy = r > 0. Sinceg(r) → 0 asr approaches 0 or∞,
and

g′(r) = (1 − r)e−r = 0 ⇒ r = 1,

f (x, y) is everywhere onQ less thang(1) = 1/e. Thus
f does have a maximum value onQ.

14. f (x, y) = xy2e−xy on Q = {(x, y) : x ≥ 0, y ≥ 0}.
As in Exercise 13,f (x, 0) = f (0, y) = 0 and
limx→∞ f (x, kx) = k2x3e−x2 = 0.

Also, f (0, y) = 0 while f

(

1

y
, y

)

=
y

e
→ ∞ as

y → ∞, so that f has no limit asx2 + y2 → ∞ in Q,
and f has no maximum value onQ.

15. If brewery A producesx litres per month and brewery B
producesy litres per month, then the monthly profits of
the two breweries are given by

P = 2x −
2x2 + y2

106 , Q = 2y −
4y2 + x2

2 × 106 .

STRATEGY I. Each brewery selects its production level
to maximize its own profit, and assumes its competitor
does the same.
Then A choosesx to satisfy

0 =
∂ P

∂x
= 2 −

4x

106
⇒ x = 5 × 105.

B choosesy to satisfy

0 =
∂Q

∂y
= 2 −

8y

2 × 106 ⇒ y = 5 × 105.

The total profit of the two breweries under this strategy is

P + Q = 106 −
3 × 25× 1010

106 + 106 −
5 × 25× 1010

2 × 106

= $625, 000.

STRATEGY II. The two breweries cooperate to maximize
the total profit

T = P + Q = 2x + 2y −
5x2 + 6y2

2 × 106
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by choosingx and y to satisfy

0 =
∂T

∂x
= 2 −

10x

2 × 106 ,

0 =
∂T

∂y
= 2 −

12y

2 × 106 .

Thus x = 4 × 105 and y =
1

3
× 106.

In this case the total monthly profit is

P + Q = 8 × 105 +
2

3
× 106 −

80× 1010 +
2

3
× 1012

2 × 106

≈ $733, 333.

Observe that the total profit is larger if the two breweries
cooperate and fix prices to maximize it.

16. Let the dimensions be as shown in the figure. Then
2x + y = 100, the length of the fence. For maximum area
A of the enclosure we will havex > 0 and 0< θ < π/2.
Sinceh = x cosθ , the areaA is

A = xy cosθ + 2 ×
1

2
(x sinθ)(x cosθ)

= x(100− 2x) cosθ + x2 sinθ cosθ

= (100x − 2x2) cosθ +
1

2
x2 sin 2θ.

We look for a critical point ofA satisfyingx > 0 and
0 < θ < π/2.

wall

h
h

x

y

x

θ θ

Fig. 13.2.16

0 =
∂ A

∂x
= (100− 4x) cosθ + x sin 2θ

⇒ cosθ(100− 4x + 2x sinθ) = 0

⇒ 4x − 2x sinθ = 100⇒ x =
50

2 − sinθ

0 =
∂ A

∂θ
= −(100x − 2x2) sinθ + x2 cos 2θ

⇒ x(1 − 2 sin2 θ) + 2x sinθ − 100 sinθ = 0.

Substituting the first equation into the second we obtain

50

2 − sinθ

(

1 − 2 sin2 θ + 2 sinθ
)

− 100 sinθ = 0

50(1 − 2 sin2 θ + 2 sinθ) = 100(2 sinθ − sin2 θ)

50 = 100 sinθ.

Thus sinθ = 1/2, andθ = π/6.

Thereforex =
50

2 − (1/2)
=

100

3
, and

y = 100− 2x =
100

3
.

The maximum area for the enclosure is

A =
(

100

3

)2 √
3

2
+
(

100

3

)2 1

2

√
3

2
=

2500
√

3

square units. All three segments of the fence will be the
same length, and the bend angles will be 120◦.

17. To maximizeQ(x, y) = 2x + 3y subject to

x ≥ 0, y ≥ 0, y ≤ 5, x + 2y ≤ 12, 4x + y ≤ 12.

The constraint region is shown in the figure.
y

x

4x+y=12

y=5

x+2y=12

(

7
4 ,5
)

Fig. 13.2.17

Observe that any point satisfyingy ≤ 5 and 4x + y ≤ 12
automatically satisfiesx + 2y ≤ 12. Sincey = 5 and

4x + y = 12 intersect at

(

7

4
, 5

)

, the maximum value of

Q(x, y) subject to the given constraints is

Q

(

7

4
, 5

)

=
7

2
+ 15 =

37

2
.

18. Minimize F(x, y, z) = 2x + 3y + 4z subject to

x ≥ 0,

x + y ≥ 2,

y ≥ 0,

y + z ≥ 2,

z ≥ 0,

x + z ≥ 2.
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Here the constraint region has vertices(1, 1, 1),
(2, 2, 0), (2, 0, 2), and(0, 2, 2). SinceF(1, 1, 1) = 9,
F(2, 2, 0) = 10, F(2, 0, 2) = 12, andF(0, 2, 2) = 14, the
minimum value ofF subject to the constraints is 9.

x

y

z

(0,2,2)

(2,2,0)

(1,1,1)

(2,0,2)

x+y=2

x+z=2

x=0

z=0

y+z=2

y=0

Fig. 13.2.18

19. Suppose thatx kg of deluxe fabric andy kg of standard
fabric are produced. Then the total revenue is

R = 3x + 2y.

The constraints imposed by raw material availability are

20

100
x +

10

100
y ≤ 2, 000, ⇔ 2x + y ≤ 20, 000

50

100
x +

40

100
y ≤ 6, 000, ⇔ 5x + 4y ≤ 60, 000

30

100
x +

50

100
y ≤ 6, 000, ⇔ 3x + 5y ≤ 60, 000.

The lines 2x + y = 20, 000 and 5x + 4y = 60, 000

intersect at the point

(

20, 000

3
,

20, 000

3

)

, which satisfies

3x + 5y ≤ 60, 000, so lies in the constraint region. We
have

f

(

20, 000

3
,

20, 000

3

)

≈ 33, 333.

The lines 2x + y = 20, 000 and 3x + 5y = 60, 000 in-

tersect at the point

(

40, 000

7
,

60, 000

7

)

, which does not

satisfy 5x + 4y ≤ 60, 000 and so does not lie in the con-
straint region.
The lines 5x + 4y = 60, 000 and 3x + 5y = 60, 000 in-

tersect at the point

(

60, 000

13
,

120, 000

13

)

, which satisfies

2x + y ≤ 20, 000 and so lies in the constraint region. We
have

f

(

60, 000

13
,

120, 000

13

)

≈ 32, 307.

To produce the maximum revenue, the manufacturer
should produce 20, 000/3 ≈ 6, 667 kg of each grade
of fabric.

20. If the developer buildsx houses,y duplex units, andz
apartments, his profit will be

P = 40, 000x + 20, 000y + 16, 000z.

The legal constraints imposed require that

x

6
+

y

8
+

z

12
≤ 10, that is 4x + 3y + 2z ≤ 240,

and also
z ≥ x + y.

Evidently we must also havex ≥ 0, y ≥ 0, andz ≥ 0.
The planes 4x + 3y + 2z = 240 andz = x + y intersect
where 6x + 5y = 240. Thus the constraint region has
vertices(0, 0, 0), (40, 0, 40), (0, 48, 48), and(0, 0, 120),
which yield revenues of $0, $2,240,000, $1,728,000, and
$1,920,000 respectively.
For maximum profit, the developer should build 40
houses, no duplex units, and 40 apartments.

Section 13.3 Lagrange Multipliers
(page 765)

1. First we observe thatf (x, y) = x3y5 must have a max-
imum value on the linex + y = 8 because ifx → −∞
then y → ∞ and if x → ∞ then y → −∞. In either
case f (x, y) → −∞.
Let L = x3y5 + λ(x + y − 8). For CPs ofL :

0 =
∂L

∂x
= 3x2y5 + λ

0 =
∂L

∂y
= 5x3y4 + λ

0 =
∂L

∂λ
= x + y − 8.

The first two equations give 3x2y5 = 5x3y4, so that ei-
ther x = 0 or y = 0 or 3y = 5x . If x = 0 or y = 0 then
f (x, y) = 0. If 3y = 5x , then x + 5

3x = 8, so 8x = 24
and x = 3. Theny = 5, and f (x, y) = 3355 = 84, 375.
This is the maximum value off on the line.

2. a) Let D be the distance from(3, 0) to the point(x, y)

on the curvey = x2. Then

D2 = (x − 3)2 + y2 = (x − 3)2 + x4.

For a minimum, 0=
d D2

dx
= 2(x − 3) + 4x3. Thus

2x3 + x − 3 = 0. Clearly x = 1 is a root of this
cubic equation. Since

2x3 + x − 3

x − 1
= 2x2 + 2x + 3,
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