X

Figure 13.12
satisfying the constraints in Example 5

The convex set of points
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Solution Suppose he makes x suits, y jackets, and z pairs of slacks. Then his profit
will be

P =20x + 14y + 12z.

The constraints posed in the problem are

>0, x <20,
>0, ¥y < 30,
z >0, z < 40,

6x + 3y + 2z < 230.

The last inequality is due to the limited supply of fabric. The solution set is shown in

Figure 13.12. It has 10 vertices, A, B, ..., J. Since P increases in the direction of the
vector VP = 20i + 14j 4+ 12k, which points into the first octant, its maximum value
cannot occur at any of the vertices 4, B, ..., G. (Think about why.) Thus, we need

look only at the vertices H, I, and J.

H = (20,10,40), P = 1,020 at H.
I =(10,30,40), P =1,100at /.
J =(20,30,10), P =940 at J.

Thus, the tailor should make 10 suits, 30 jackets, and 40 pairs of slacks to realize the
maximum profit, $1,100, from the fabric.

10.

. Find the maximum and minimum values of

f(x.y) = x —x?+ y? on the rectangle 0 < x <2,
0<y=1L

. Find the maximum and minimum values of

f(x,y) =xy —2xontherectangle —1 <x <1,0<y < 1.

. Find the maximum and minimum values of

f(x.y) = xy — y? on the disk x? + y2 < 1.

. Find the maximum and minimum values of f(x,y) = x +2y

on the disk x? + y2 < 1.

. Find the maximum and minimum values of

f(x,y) =xy —x3y?overthesquare 0 < x < 1,0 < y < 1.

. Find the maximum and minimum values of

f(x,y) = xy(1 —x — y) over the triangle with vertices
(0,0), (1,0), and (0, 1).

. Find the maximum and minimum values of

f(x,y) = sinx cos y on the closed triangular region bounded
by the coordinate axes and the line x + y = 2.

. Find the maximum value of f(x, y) = sinx sin y sin(x + y)

over the triangle bounded by the coordinate axes and the line
X+y=m.

. The temperature at all points in the disk x? + y2 < 1 is given

by T = (x+ ) ¢~**=»*_ Find the maximum and minimum
temperatures at points of the disk.

Find the maximum and minimum values of

_ —-)
f(X,J’)— 1+x2+y2

11.

12.

13.

14.
15.

on the upper half-plane y > 0.

Find the maximum and minimum values of xy? + yz? over
the ball x2 4+ y? +z2 < 1.

Find the maximum and minimum values of xz + yz over the
ball x2 + y2 +z2 < 1.

Consider the function f(x, y) = xy e”*” with domain the
first quadrant: x > 0, y > 0. Show that

limy 00 f(x,kx) = 0. Does f have a limit as (x, y) recedes
arbitrarily far from the origin in the first quadrant? Does f
have a maximum value in the first quadrant?

Repeat Exercise 13 for the function f(x,y) = xyZ e 7.

In a certain community there are two breweries in competition,
so that sales of each negatively affect the profits of the other. If
brewery A produces x litres of beer per month and brewery B
produces y litres per month, then brewery A’s monthly profit

$ P and brewery B’s monthly profit $Q are assumed to be

22 2

p=ox- X1
106

4y2+X2

—gy Y
0 =2y 705

Find the sum of the profits of the two breweries if each
brewery independently sets its own production level to
maximize its own profit and assumes its competitor does
likewise. Find the sum of the profits if the two breweries
cooperate to determine their respective productions to
maximize that sum.
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Equal angle bends are made at equal distances from the two
ends of a 100 m long straight length of fence so the resulting
three-segment fence can be placed along an existing wall to
make an enclosure of trapezoidal shape. What is the largest
possible area for such an enclosure?

polyester, and it sells for $3 per kilogram. The standard grade
has composition 10% wool, 40% cotton, and 50% polyester,
and it sells for $2 per kilogram. If he has in stock 2,000 kg of
wool and 6,000 kg each of cotton and polyester, how many
kilograms of fabric of each grade should he manufacture to

17. Maximize Q(x, y) = 2x + 3y subject to the constraints maximize his revenue?

x>0,y>0,y<5x+2y<12,and4x + y < 12. 20. A 10-hectare parcel of land is zoned for building densities of 6
18. Minimize F(x, y,z) = 2x + 3y + 4z subject to the detached houses per hectare, 8 duplex units per hectare, or 12

constraints x > 0,y >0,z > 0,x +y > 2,y +z > 2, and apartments per hectare. The developer who owns the land can

x4+z>2. make a profit of $40,000 per house, $20,000 per duplex unit,
and $16,000 per apartment that he builds. Municipal bylaws
require him to build at least as many apartments as the total of
houses and duplex units. How many of each type of dwelling
should he build to maximize his profit?

19. A textile manufacturer produces two grades of fabric
containing wool, cotton, and polyester. The deluxe grade has
composition (by weight) 20% wool, 50% cotton, and 30%

Lagrange Multipliers

A constrained extreme-value problem is one in which the variables of the function to
be maximized or minimized are not completely independent of one another, but must
satisfy one or more constraint equations or inequalities. For instance, the problems
maximize f(x,y) subjectto g(x,y)=C
and
minimize

f(x,y,z,w) subjectto g(x,y,z,w)=Cy,

and K(x,y,z,w) = C,
have, respectively, one and two constraint equations, while the problem
fx.y.2)

has a single constraint inequality.

maximize subjectto g(x,y,z) <C

Generally, inequality constraints can be regarded as restricting the domain of the
function to be extremized to a smaller set that still has interior points. Section 13.2 was
devoted to such problems. In each of the first three examples of that section we looked
for free (i.e., unconstrained) extreme values in the interior of the domain, and we also
examined the boundary of the domain, which was specified by one or more constraint
equations. In Example 1 we parametrized the boundary and expressed the function
to be extremized as a function of the parameter, thus reducing the boundary case to
a free problem in one variable instead of a constrained problem in two variables. In
Example 2 the boundary consisted of three line segments, on two of which the function
was obviously zero. We solved the equation for the third boundary segment for y
in terms of x, again in order to express the values of f(x,y) on that segment as a
function of one free variable. A similar approach was used in Example 3 to deal with
the triangular boundary of the domain of the area function A(8, ¢).

The reduction of extremization problems with equation constraints to free prob-
lems with fewer independent variables is only feasible when the constraint equations
can be solved either explicitly for some variables in terms of others or parametrically
for all variables in terms of some parameters. It is often very difficult or impossible to
solve the constraint equations, so we need another technique.

The Method of Lagrange Multipliers

A technique for finding extreme values of f(x, y) subject to the equality constraint
g(x,y) = 01is based on the following theorem:
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Section 13.2 Extreme Values of Functions
Defined on Restricted Domains (page 758)

1. f(x,y)=x—x2+y?on
R={(x,y):0<x<2 0<y<l1}.
For critical points:
0= fax,y) =1-2x, 0= fa(x,y) = 2y.

The only CP is(1/2, 0), which lies on the boundary of

R.

The boundary consists of four segments; we investigate
each.

Onx = 0we havef(x,y) = f(0,y) = y? for

0 < y < 1, which has minimum value 0 and maximum
value 1.

Ony = 0 we havef(x,y) = f(x,0) = x — x% = g(X)
for0 < x < 2. Sinceg(x) =1—-2x=0atx = 1/2,
9(1/2) = 1/4,9(0) = 0, andg(2) = —2, the maxi-
mum and minimum values of on the boundary segment
y = 0 are 1/4 and-2 respectively.

Onx = 2 we havef(x,y) = f(2,y) = —2+ y? for

0 <y < 1, which has minimum value-2 and maximum
value —1.

ony=1,f(x,y)=f(x,) =x—x24+1=gXx)+1
for 0 < x < 2. Thus the maximum and minimum values
of f on the boundary segmegt= 1 are 5/4 and-1
respectively.

Overall, f has maximum value & and minimum value
—2 on the rectangler.

2. f(x,y)=xy—2x on

R={(x,y):—1<x<1 0<y<1}.
For critical points:

/e
The only CP is(0, 2), which lies outsideR. Therefore
the maximum and minimum values df on R lie on one
0 of the four boundary segments &
ag- Onx = —1 we havef(-1,y)=2—-yfor0 <y <1,

which has maximum value 2 and minimum value 1.
Onx=1we havef(l,y)=y—2for0<y <1, which
has maximum value-1 and minimum value-2.

Ony = 0 we havef(x,0) = —2x for -1 < x < 1,
which has maximum value 2 and minimum vald@.
Ony =1 we havef(x,1) = —x for —1 < x < 1, which
has maximum value 1 and minimum valu€l.

Thus the maximum and minimum values 6fon the
rectangleR are 2 and—2 respectively.

3. fx,y)=xy—y?onD={(x,y): x*+y?<1}.
For critical points:

0= fix,y) =Y, 0= fa(x,y) = x —2y.
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The only CP is(0, 0), which lies insideD. We have
f(0,0) =0.

The boundary oD is the circlex = cost, y = sint,
—n <t <x. On this circle we have

g(t) = f(cost, sint) = cost sint — sirft

1r .
=§[SIHZ+COSZ—1:|, (= <t=<mnm).

g(0) =9g(@r)=0
g(t) =cos2 —sin2Z.

The critical points ofg satisfy cos® = sin 2, that is,

T 5r T 5
tanz2 =1,s02 =+—or+—, andt = +— or +—
4 4 8

g
We have

(Z)_L_EJFL_L_LO
98 T2V2 2 242 V2 2
(_71')__ 1 _1+ 1 __1
978/~ V2 2 22 2
g(&)_ 1 1 1 1 1
8) 22 2 22 V2 2

1 1 1 1

g<_?>:z_ﬁ_5_z_ﬁ:_2'
Thus the maximum and minimum values 6fon the

1 1 1 1
disk D are — — - and—— — > respectively.

V2 2 V2
f(X,y) = x + 2y on the closed disk? + y2 < 1. Since
fi = 1 and f, = 2, f has no critical points, and the
maximum and minimum values of, which must exist
becausef is continuous on a closed, bounded set in the
plane, must occur at boundary points of the domain, that
is, points of the circlex? + y? = 1. This circle can be
parametrizedk = cost, y = sint, so that

f(x,y) = f(cost, sint) = cost 4+ 2sint = g(t), say.

For critical points ofg: 0 = ¢'(t) = —sint + 2cost.
Thus tart = 2, andx = +1/4/5,y = +2/4/5. The
critical points are(—1/+/5, —2/+/5), where f has value
—+/5, and(1/+/5, 2/+/5), where f has valuey/5. Thus
the maximum and minimum values df(x, y) on the
disk are+/5 and—+/5 respectively.

f(x,y) = xy — x3y2 on the squares; 0 < x < 1,
O<y=<1l

fi =y — 3% = y(1-3x%),

fo = x — 2x3y = x(1 — 2x2y).

(0, 0) is a critical point. Any other critical points must
satisfy &%y = 1 and X%y = 1, that is,x%y = 0.
Therefore(0, 0) is the only critical point, and it is on the
boundary ofS. We need therefore only consider the val-
ues of f on the boundary oB.

On the sidesx =0 andy =0 of S, f(x,y)=0.

SECTION 13.2

On the sidex = 1 we havef (1, y) = y — y2 = g(y),
(0 <y < 1). g has maximum value /4 at its critical
pointy =1/2.
On the sidey = 1 we havef (x, 1) = x — x3 = h(x),
(0 < x < 1). h has critical point given by % 3x2 = 0;
only x = 1/4/3 is on the side ofS.
h (i) _2 .1

Vv3) 3/3 4
On the squares, f(x,y) has minimum value O (on the
sidesx = 0 andy = 0 and at the cornefl, 1) of
the square), and maximum valug(2/3) at the point
(1/4/3,1). There is a smaller local maximum value at
1, 1/2).

f(X,y) = xy(1 — x — y) on the triangleT shown in

the figure. Evidentlyf (x, y) = 0 on all three bound-
ary segements of, and f (x,y) > 0 insideT. Thus

the minimum value off on T is 0, and the maximum
value must occur at an interior critical point. For critical
points:

0= fi(x, y) = y(1-2x-y), 0= fa(x, y) = x(1-x-2y).
The only critical points ar€0, 0), (1, 0) and (0, 1),

which are on the boundary &f, and(1/3, 1/3),

which is insideT. The maximum value off over T

is f(1/3,1/3) = 1/27.

Y11

X+y=1

Fig. 13.2.6

Since—1 < f(x,y) = sinxcosy < 1 everywhere, and
since f(z/2,0) =1, f(3z/2,0) = —1, and both(z /2, 0)
and (3z /2, 0) belong to the triangle bounded by= 0,

y = 0 andx + y = 2z, therefore the maximum and
minimum values off over that triangle must be 1 and
—1 respectively.

f(x,y) = sinxsinysin(x + y) on the triangleT shown

in the figure. Evidentlyf (x, y) = 0 on the boundary

of T, and f(x,y) > 0 at all points insideT. Thus the
minimum value off on T is zero, and the maximum
value must occur at an interior critical point. For critical
points insideT we must have

0= f1(X, y) = cosxsinysin(x + y) + sinx siny cogx + y)
0= fa(X, y) = sinxcosysin(x + y) + sinx siny cogx + ).

501
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Therefore cog siny = cosy sinx, which impliesx = y
for points insideT, and
cosx sinx sin 2 + sin’ x cos X = 0
2sirf x oS X + 2sirf x cog x — sif x = 0
4codx =1
Thus cox = +1/2, andx = £z /3. The interior critical
point is (z /3, = /3), where f has the value 33/8. This

is the maximum value of onT.
y A

Z+y=mn

Fig. 13.2.8

T=x+y)e XY onD={xy):x2+y2 <1}
For critical points:

_ oT _ —x2y?
0= = (1—2x(x+y)>e

_ oT _ _x2_y?
O_a—y_(1—2y(x+y))e .

The critical points are given by
2x(x +y) = 1 = 2y(x +y), which forcesx = y and
1

4x2=1,sox=y==4=.
1 1

- . 11
The two critical points are(E, E) and (_5’ =)
both of which lie insideD. T takes the valuese /2 at
these points.

On the boundary oD, x = cost, y =sint, 0 <t < 2r,
so that

T = (cost + sint)e™t = g(t), (0<t<2r).

We haveg(0) = g(2r) = e~1. For critical points ofg:

0= g'(t) = (cost — sint)e .,

so tart = 1 andt = #/4 ort = 5z /4. Observe that
g(z/4) = v2e71, andg(5z/4) = —v2e7 1.

Sincee 12 > /2e71 (becausee > 2), the maximum and
minimum values ofT on the disk arete~1/2, the values
at the interior critical points.

-y
fx,y) = Tix2+y2 on the half-planey > 0.

For critical points:
1—x2+y?+2xy
(1+x2 4 y?)2
—1-x24+y?—2xy
1+ %2+ y?)?

0= fix,y) =

0= falx,y) =
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Any critical points must satisfy + x2 + y2 + 2xy = 0
and—1 — x2 + y2 — 2xy = 0, and hence? = y2 and
2xy = —1. Thereforey = —x = +1/+/2. The only
critical point in the regiory > 0 is (—1/v/2, 1/+/2),
where f has the value-1//2.

On the boundary = 0 we have

f(x,0) = % = g(x), (—00 < X < 00).

+ X2

Evidently, g(x) — 0 asx — =+oo.
2

Sinceg’ (x) = the critical points ofg are

—X
a2
x = +1. We haveg(+1) = j:%.

The maximum and minimum values df on the upper
half-planey > 0 are 72 and—1/+/2 respectively.

Let f(x, Y, z) = xy2+yz2 on the ballB: x2+y2+z72 < 1.
First look for interior critical points:
0= fy =2xy + 2%,

0= f1 =y? 0= f3=2yz

All points on thex-axis are CPs, and = 0 at all such
points.

Now consider the boundary spher@= 1 — x? — y2. On
it

f(X,Y,2) = xy?+y(1-x*—y?) = xy?+y—x%y—y* = g(x, y),

whereg is defined forx?+y? < 1. Look for interior CPs
of g:

0=g1=y*—2xy = y(y — 2X)

0=gp =2xy+1—x?— 3y

Case l:.y=0. Theng=0andf =0.

Case Iy = 2x. Then &% + 1 — x2 —12x%2 = 0, so
9x2 = 1 andx = +1/3. This case produces critical
points

33 3
2

(1 gj:g> where f = g and
1 2 4
(—é,—é,ié), Wheref =—§

Now we must consider the boundaxy + y2 = 1 of the
domain ofg. Here

g(x,y) = xy? = x(1— x?) = x — x> = h(x)
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for —1 < x < 1. At the endpointx = +1,h = 0, so
g=0andf =0. For CPs ot:

0=h'(x) =1-3x%

sox = +1/+4/3 andy = +.,/2/3. The value ofh at such
points is+2/(3v/3). However 2(3v/3) < 4/9, so the
maximum value off is 4/9, and the minimum value is
—4/9.

Let f(x,y,2z) = xz+ yz on the ballx? + y2 + 22 < 1.
First look for interior critical points:

O0=fi=2z 0=fy=2z O0=f3=x+Yy.
All points on the linez = 0,x +y = 0 are CPs, and
f = 0 at all such points.

Now consider the boundary sphex@ + y2+ z2 = 1. On
it

f(X,y,2) = (x+y)z=£(X+Yy)/1-x?—-y2=g(X, y),

whereg has domairx? + y? < 1. On the boundary of its
domain, g is identically 0, althouglg takes both positive

and negative values at some points inside its domain.

Therefore, we need consider only critical pointsgoin

x2 +y2 < 1. For such CPs:

X+ y)(=2%)
O=g1=/1-X2—y?+ ————"
' 2/1—x2—y?
1-x2—y?—x2—xy
1-x2-y?
1-x2—y?—xy—y?
0= g Y -xy -y
1-x2—y?

Therefore 22+ y?+xy = 1 = x?+ 2y?+xy, from which
X2 =y,

Case I:)x =—y. Theng=0, sof =0.

Case ll:x =y. Then X°+x?+x?> =1, sox? = 1/4 and
X = £1/2. g (which is really two functions depending

on our choice of the+” or “—" sign) has four CPs, two
corresponding to« =y = 1/2 and two tox =y = —1/2.

The values ofg at these four points aré1/+/2.

Since we have considered all points whdrean have
extreme values, we conclude that the maximum value
of f on the ball is ¥+/2 (which occurs at the boundary
points +(3, 1, %)) and minimum value-1/4/2 (which

occurs at the boundary points(3, 3, —%)).

13.

14.

15.

SECTION 13.2

f(x,y)=xye™ onQ={(x,y) : x>0, y=>0}.

Since f (x, kx) = kx2e ™ s 0 asx — o if k > 0, and
f(x,0) = f(0,y) = 0, we havef(x,y) — 0 as(x,y)
recedes to infinity along any straight line from the origin
lying in the first quadranQ.

1
However, f (x, ;) =1landf(x,0) =0 forall x > 0,

1
even though the pointéx, ;) and (x, 0) become ar-

bitrarily close together ag increases. Thug does not
have a limit asx? + y? — oc.
Observe thatf (x, y) = re™" = g(r) on the hyperbola
Xy =r > 0. Sinceg(r) — 0 asr approaches 0 oro,
and

g =AQ-rne’"'=0 =

f(x,y) is everywhere omQ less thang(1) = 1/e. Thus
f does have a maximum value @

r=1,

f(x,y) =xy?e™ on Q={(x,y): x>0, y=>0}.
As in Exercise 13,f(x,0) = f(0,y) = 0 and
limyo oo f(X, kx) = k2x3e~ % = 0.

Also, f(0,y) = 0 while f (%y) =

y — o0, so thatf has no limit asx? + y2 — oo in Q,
and f has no maximum value oQ.

If brewery A produces litres per month and brewery B
producesy litres per month, then the monthly profits of
the two breweries are given by

4y2 4 x2

2P 4y?
2x 100

P:2X T, Q

STRATEGY I. Each brewery selects its production level
to maximize its own profit, and assumes its competitor
does the same.

Then A choosex to satisfy

oP 4x
0=—=2—— =5x 10°.
oX w x
B choosesy to satisfy
0Q 8y
0=—=2—- =5x 10,
2y 2x10 . YT%

The total profit of the two breweries under this strategy is

3x 25x 1010 5 x 25 x 1010
kiR, o 3

P+Q=10-—5 BT

= $625 000

STRATEGY II. The two breweries cooperate to maximize
the total profit

5x2 + 6y?

ToP+Q=2xt2y— X T
TQ=2+2y- -5

503
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by choosingx andy to satisfy

oT 10x
0:—:2——
X 2x 106’
0 T _ 12y
oy 2x 108"

1
Thusx =4 x 1¢° andy = = x 1(P.
In this case the total monthly profit is

2
80x1010+§ x 1012
2x 108

2
P+Q:8><105+§><106—
~ $733 333

Observe that the total profit is larger if the two breweries
cooperate and fix prices to maximize it.

Let the dimensions be as shown in the figure. Then
2x+y = 100, the length of the fence. For maximum area
A of the enclosure we will have > 0 and 0< 8 < z/2.
Sinceh = x cosf, the areaA is

1
A = xycosd + 2 x E(X sind)(x cosh)
= x(100— 2x) cosd + x? sind cosd
1 .
= (100x — 2x?) cost + Exz sin .

We look for a critical point ofA satisfyingx > 0 and
0<6 <m/2.

wall
[ ]

Fig. 13.2.16

0= g—f = (100— 4x) cost + xsin 2
= c0s#(100— 4x + 2x sinfd) = 0

50

= 4x — 2xsinf = 100= x =

oA .
0= — = —(100« - 2x%) sinf + x?cos @

= X(1— 2sirf ) + 2x sind — 100 sirY = 0.

504
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Substituting the first equation into the second we obtain

50
2 —sind
50(1 — 2sirf 6 + 2 sind) = 100(2 sind — sir? 6)
50 = 100 sirY.

(1—23ir120+25in9) —100siM9 =0

Thus sird = 1/2, andd = = /6.
50 100
Theref = —— = —,and
ereforex 72 3 an
100
y =100—2x = =

The maximum area for the enclosure is
A (100 2¢§+ 100\*1+/3 _ 2500
3 2 3 22 /3
square units. All three segments of the fence will be the
same length, and the bend angles will be 120

To maximize Q(x, y) = 2x + 3y subject to

x>0, y>0, y<5 x+42y<12 4x+y<12

The constraint region is shown in the figure.
y

Ax4y=12

y=5
xX+2y=12
7
(9
>~
Fig. 13.2.17

Observe that any point satisfying< 5 and & +y < 12
automatically satisfieg + 2y < 12. Sincey = 5 and

. 7 .
4x + y = 12 intersect a 7 5), the maximum value of

Q(x, y) subject to the given constraints is

7 7 37
Q(Z,5> = - 4+15= ",

Minimize F(x, y, z) = 2x + 3y + 4z subject to

X >0,
X+y=>2

y=0,
y+z=2,

z>0,
X+z>2
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Here the constraint region has vertiogds 1, 1),

(2,2,0), (2,0,2), and (0, 2, 2). SinceF(1,1,1) = 9,
F(2,2,0) =10, F(2,0,2) =12, andF(0, 2, 2) = 14, the
minimum value ofF subject to the constraints is 9.

Fig. 13.2.18

Suppose thak kg of deluxe fabric and/ kg of standard
fabric are produced. Then the total revenue is

R = 3x + 2y.

The constraints imposed by raw material availability are

20 10

merﬁ)ysZ,OOQ & 2x+ Yy < 20,000
50 40

ﬁ)x+my§6,ooo, < 5x + 4y < 60,000
30 50
ﬁ)erH)ysfi,OOO, < 3x + 5y < 60,000

The lines X + y = 20,000 and % + 4y = 60, 000
20,000 20,000
3 7 3
3x + 5y < 60, 000, so lies in the constraint region. We

have

intersect at the poin , Which satisfies

¢ <20,3000’ 20,3?00) ~ 33,333

The lines X + y = 20,000 and & + 5y = 60, 000 in-
40,000 60,000
7 77
satisfy 5 + 4y < 60, 000 and so does not lie in the con-
straint region.

The lines % + 4y = 60,000 and & + 5y = 60, 000 in-
60,000 120 000
13 7 13
2X +y < 20,000 and so lies in the constraint region. We

have

tersect at the poin , which does not

tersect at the poin , Which satisfies

¢ 60, 000 120,000
13 7 13

) ~ 32, 307.

20.

To produce the maximum revenue, the manufacturer
should produce 2M00/3 ~ 6,667 kg of each grade
of fabric.

If the developer builds housesy duplex units, and
apartments, his profit will be

P = 40, 000x + 20, 000y + 16, 00Qz.

The legal constraints imposed require that

X y z .
—+Z+4+-—<10 thatis &+ 3 2z < 24
6+8+12_ ’ ! T3yt 2z<240

and also

Z>X+Y.

Evidently we must also have > 0, y > 0, andz > 0.

The planes # + 3y + 2z = 240 andz = x + y intersect
where & + 5y = 240. Thus the constraint region has
vertices(0, 0, 0), (40, 0, 40), (0, 48,48), and (0, 0, 120),
which yield revenues of $0, $2,240,000, $1,728,000, and
$1,920,000 respectively.

For maximum profit, the developer should build 40
houses, no duplex units, and 40 apartments.
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